
Technical Report 
CMWSEI-91-TR-29 

ESD-TR-91-29 
October 1991 

A Critical Review 
of the Current State 
of IPSE Technology 

Alan W. Brown 
Software Development Environments Project 

Approved for public release. 
Distribution unlimited. 

Software Engineering Institute 
Carnegie Mellon University 

Pittsburgh, Pennsylvania 15213 



This technical report was prepared for the 

SEI Joint Program Office 
ESDfAVS 
Hanscom AFB, MA 01731 

The ideas and findings in this report should not be construed as an official 
DOD position. It is published in the interest of scientific and technical 
information exchange. 

Revlew and Approval 

This report has been reviewed and is approved for publication. 

FOR THE COMMANDER 

SEI Joint Program Office 

The Software Engineering Institute is sponsored by the U.S. Department of Defense. 
This report was funded by the U.S. Department of Defense. 
Copyriiht Q 1991 by Carnegie Mellon University. 

This document is available through the Defense Technical Information Center. DTIC provides access to and transfer of 
scientifii and technical information for DOD personnel, DoD contractors and potential contractors, and other U.S. Government 
agency personnel and their contractors. To obtain a copy, please contact DTIC directly: Defense Technical Information 
Center, Attn: FDRA, Cameron Station, Alexandria, VA 223046145. 

Copies of this uocurnent are also available through the National Technical Information Service. For information on ordering, 
please contact NTIS directly: National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. 

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder. 



Contents 

1 Introduction 1 
1.1 WhatisanIPSE? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 

2 Reasons for the Lack of IPSE Use 5 
2.1 IPSE Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 
2.2 IPSE Shortcomings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 

3 Alternative Solutions 9 

4 Where is All the Money Going? 13 

5 Key Issues for the Future 15 

6 Summary 19 

CMU/SEI-91-TR-29 i 



CMU/SEI-91-TR-29 



*” 
C.-v 

vi 
CI 

crl 
C-4 

rm 

c3 

Chapter 1 

Introduction 

“We shall not cease from exploration 
And the end of all our exploring 

Will be to arrive where we started 
And know the place for the first time.” 

T.S. Eliot, Little Gidding. 

Abstract: In the past ten years there has been a great deal of interest in the concept 
of an Integrated Project Support Environment (IPSE) as a complete, unifying framework of 
services supporting most (or all) phases of software development and maintenance. In this 
paper we evaluate the current state of research work in this area, suggest some reasons for 
the relative lack of success, and make proposals for ensuring measured progress in the future. 

The concept of an Integrated Project Support Environment (IPSE)l was developed in the late 
1970’s and early 1980’s in response to a recognition that the traditional notion of a set of program 
development tools (editor, compiler, debugger) is only a small component of a much larger set 
of facilities required to coordinate the many tasks involved in large-scale software production. 
While various descriptions of many of the concepts are available, in many ways the seminal 
work on IPSEs and IPSE architecture is the Stoneman report[6, 71 defining the architecture of 
an Ada Programming Support Environment (APSE). Attempts at defining an architecture for 
a project support environment have been greatly influenced by this work. In that report a basic 

‘Also variously called a Software Development Environment (SDE), Software Engineering Environment (SEE), 
and Integrated Software Factory (ISF). 

CMU/SEI-91-TR-29 1 



“onion layer” architecture was defined with kernel support at the center (operating system and 
database services), a minimal toolset surrounding that kernel (essential support tools such as 
an editor, compiler and debugger), and an outer layer of further tools (specific tools to tailor 
the environment to different software development techniques). While decentralized approaches 
are now being examined, the Stoneman approach has been the touchstone for much subsequent 
work. 

It has now been more than 10 years since Stoneman. It is high time that we stood back 
and evaluated the current situation with regard to IPSEs and IPSE technology, the lessons 
learned, the progress made during the 1980’s, and the likely directions for the 1990’s. Among 
the questions we should ask are: 

l How much progress has been made since Stoneman? 

l What are our experiences after this time? 

l What lessons have we learned about good and bad approaches to IPSEs? 

l Where is much of the current research effort being applied? 

a What do we see as the key issues for the future? 

In addressing these questions we draw together a number of important issues that are currently 
the topic of much discussion both in Europe and the US concerning the likely direction of work 
in the field of computer support for software development. Hence, we hope to point the way 
forward for future work in this important area of software engineering. 

We begin by examining some of the reasons for the relatively slow take up of IPSE technology in 
the commercial world, then turn our attention to alternative solutions which have seen greater 
success. We then briefly highlight the main areas of IPSE research currently being pursued, 
before concluding with an analysis of the key issues for the future. 

1.1 What is an IPSE? 

For the purposes of this paper, we distinguish two classes of approach towards computer-based 
software development support, based on the definitions given in [21]. 

The first class, which we refer to as Integrated Project Support Environments (IPSEs), can 
be seen as the direct descendents of the Stoneman work. The primary aim of these systems 
is to investigate environment infrastructure technology by concentrating on the definition of 
an environment framework. The majority of the work in this area has explored the common 
services that need to be provided by such a framework, and the consequent interaction between 
the framework and tools which are embedded within it. 

Two concepts are of particular interest here: 

2 CMU/SEI-91-TR-29 



l We can distinguish between the IPSE as a framework of common services, and a “populated 
IPSE” (i.e. the IPSE together with its embedded tools). One IPSE framework may be 
populated with different sets of tools to suit different software development needs. 

l The IPSE framework (implicitly or explicitly) supports some notion of a software devel- 
opment process. By the very nature of its architecture, the IPSE will make some models 
of the software development process easier or more difficult to support. In some cases, a 
single, well-defined software process is built into the IPSE framework from the outset. In 
other cases there is more flexibility over the development process supported. 

The second class is the Computer-Aided Software Engineering (CASE) tool approach. Here, 
driven by market needs, simple software development tools have been enhanced to provide more 
comprehensive services for data management, better user interface facilities, and increased tool 
functionality. 

There are two notable trends in the CASE tool world: 

l In recent years the range and availability of tools has increased greatly. Tools now cover 
some aspects of multiple stages of software development, from requirements elicitation 
through to system maintenance. 

l As users have gained experience with CASE tools they have seen the need for combining 
individual tools to cover more (or all) of the software development life-cycle. Two ap- 
proaches to integration of CASE tools have been attempted - ad hoc integration through 
filters, pipes, and transfer protocols, and “vendor pacts”, where CASE tool vendors share 
knowledge of their tools to allow them to work together in the hope of increasing their 
market share. The term “integrated CASE (iCASE)” is sometimes used in any, or all, of 
these situations. 

In the remainder of this paper we concentrate on the use of IPSE technology, the reasons for its 
relative lack of success, how it compares to the more commercially active CASE market, and 
how future research should focus on a number of key areas in order to ensure maximum leverage 
from the large body of expertise and knowledge gained from existing work in IPSE technology. 

CMU/SEI-91-TR-29 3 



4 CMU/SEI-91-TR-29 



Chapter 2 

Reasons for the Lack of IPSE Use 

It is not being overly dramatic to say that IPSEs and IPSE technology are not currently being 
used in anywhere near the number of commercial organizations that were envisaged at the start 
of the 1980’s. What is more, the development and acceptance of IPSE technology has taken much 
longer than was expected. For example, the vision of the UK Government-funded Alvey program 
in the early 1980’s was that the Information System Factory (ISF), employing knowledge-based 
techniques in the support of all aspects of computer system development, would be in place 
within the first few years of the 1990’s. Clearly, this will not be the case. 

2.1 IPSE Achievements 

It is wrong to believe, however, that no progress has been made at all. Significant achievements 
have been recognized through the IPSE work that has taken place over the last decade. Here 
we choose to highlight two of those achievements: 

l A major focus of IPSE research has been in the area of data management support for the 
large, complex set of data items that typically must be recorded and controlled[3, 11. Fol- 
lowing initial attempts at using commercially available database systems as IPSE repos- 
itories, the problems encountered have resulted in detailed examinations of IPSE data 
management requirements, leading to enormous activity in the database world to address 
those requirements. This has produced definitions of new IPSE data models[9], initiated 
development of the field of Object Management Systems (OMSs) for IPSEs[12], and pro- 
vided a major catalyst for work in the area of object-oriented databases (OODBs)[4]. 
Indeed, support for computer-aided design (CAD) ’ g m eneral, with IPSEs as a particular 
class of CAD system, has been at the very heart of the current revolution in database 
technology. 

l The main aim of an IPSE is to represent and support some notion of a software development 
process. Initially, the process supported was implicitly embedded in the IPSE through the 
choice of available tools, and the restrictions placed on their interconnection. Much of 

CMU/SEI-91-TR-29 5 



the IPSE work in the past few years, however, has been in attempting to make process 
notions more explicit, user-definable, and executable[l9, 181. Understanding, modeling, 
and automating the software development process is also currently a very active area of 
software engineering research in general[l4]. This work, while motivated by many factors, 
has both drawn from, and fed into the work on IPSEs. Certainly, the insights gained 
through IPSE work have been of great benefit to this field, improving our understanding 
of the software development process and how to support it. 

2.2 IPSE Shortcomings 

Based on reported IPSE user experiences and our knowledge of the IPSE field gained from 
talking with fellow IPSE researchers, end users looking for suitable IPSE and CASE technology, 
and third party tool developers, we can see a number of reasons why IPSEs and IPSE technology 
are not in widespread use. The most important of these reasons appear to be: 

1. Little documented evidence of the cost effectiveness of IPSE technology. 

There have been successful examples of the use of IPSE technology. However, there is very 
little publicly available and reliable data describing what technology was used, how it was 
chosen, what problems it addressed, and what measurable benefits were obtained. There 
are obvious reasons why-commercial confidentiality, lack of time to write up results, 
reluctance to write about failures as well as successes, and perhaps, a lack of fora for 
discussing “real” user experiences. However, one of the major problems in this area is 
both the lack of suitable data on which to perform such analyses, and the lack of suitable 
meters with which to measure changes in productivity. Figures such as “a 12-fold increase 
in productivity” can often lead to long debate on what is being measured, how it is 
being measured, and what the new values are being compared to. For example, with 
the SAFRA report[l’l], it is tempting to conclude that the large gains in productivity 
that are claimed are more a result of changes in working practices and general software 
process improvements that accompanied the introduction of the IPSE technology than a 
consequence of the IPSE technology itself. This is not to say that the IPSE technology 
was without value; rather that it constitutes only part of a larger change in culture. 

It may be difficult to document the experiences of using IPSEs, but without a body of 
evidence to back up the case for IPSE technology many commercial companies will be 
unable to justify making an investment in the technology. 

2. The size of IPSEs. 

In general, an IPSE is attempting to manage a large, complex set of problems in software 
development. This leads to IPSEs themselves being large, complex software systems. 
There are important consequences of this: 

l They are inevitably costly to purchase, maintain, and use, with possibly a large in- 
vestment required in new hardware on which to run the IPSE, training of staff, con- 
sultancy fees, and upgrades to the system as new releases of the IPSE infrastructure 
and its tools are produced. 

6 CMU/SEI-91-TR-29 



l Their size, complexity, and relative newness can result in instability in IPSE oper- 
ation, manifesting itself in poor design, slow performance, low availability due to 
system crashes, and so on. Users may often find themselves in the position of being 
one of only a small number of customers using that IPSE, with the uncomfortable 
feeling that they are debugging the IPSE for its developers. 

l A complex piece of system software such as an IPSE requires technical support staff 
to monitor, tune, and adjust its operational parameters increasing the cost of using 
the IPSE. 

l There will inevitably be some effect on the software development processes employed 
by an organization through the introduction of this new technology. Just the time 
needed to become familiar with an IPSE may mean that initially productivity actually 
decreases before (hopefully) increasing above previous levels. More often, however, 
the introduction of IPSE technology is seen as part of a larger program in software 
process improvement [ 141, when it is all too easy to either expect too much of the 
technology supporting the process changes, and to blame the technology when the 
changes do not keep to plan. 

3. Lack of jlexibility. 

The ideal of providing a tailorable, configurable IPSE which is customized as necessary 
for different organizations, projects, and individuals is in reality a long way from current 
practice. The more usual situation is that the IPSE provides services through a fixed set 
of tools, with at best the possibility of new tools being added by referring back to the 
IPSE builders (e.g. ISTAR[8] and ECLIPSE[2]). Such inflexibility is a great drawback to 
the use of IPSEs across different commercial organizations in the different development 
processes they employ, as well as within a single commercial organization which employs 
different development processes for different projects. 

4. Concern about long-term investment. 

The IPSE market is very volatile at present, with new ideas, approaches, mechanisms, and 
techniques being announced quite regularly. For commercial organizations contemplating 
using IPSE technology, they are naturally greatly concerned that they make the “right” 
choices. This is hampered at present by confusion surrounding the technology and its 
advantages and disadvantages. A major aim of much recent work has been to help with 
the necessary analysis and comparison of the many possible approaches, techniques and 
mechanisms (for example, the European Computer Manufacturers Association 
reference model for Computer-Assisted Software Engineering Environments[lO]). 

(ECMA) 

Perhaps the greatest problem in this area involves the issue of standards. As is often the 
case, the idea of standards is attractive to commercial organizations (both vendors and 
users) as it leads to thoughts of portability, compatibility, larger market share, extended 
product life-time, and so on. Unfortunately, in the IPSE world there is still much debate 
over which areas of IPSE technology should be standardized, whether the time is right 
for standardization in those areas, which existing standards are most appropriate, and 
what new standards should look like. Many commercial organizations would prefer that 
some of these issues were closer to being resolved before making their decisions about 

CMU/SEI-91-TR-29 7 



what technology to use. Indeed, there is also the argument that the best standards are 
those that evolve naturally through a process of “natural selection”. However, this is only 
possible when a range of competing systems are used over an extensive period of time 
which is not yet the case for IPSEs. 

In summary, we recall that the main focus of IPSEs is the infrastructure in which the development 
tools can be embedded. Through the definition of appropriate services within the infrastructure, 
IPSEs hope to provide increased tool portability, improved tool integration mechanisms, and 
a single approach to common development activities. However, in practice we see that these 
advantages can often be nullified by a series of pragmatic issues. We have highlighted a few of 
these, including the strategic nature of the purchase of IPSE technology, the high cost of pur- 
chase, the probable changes required to existing working practices, and the lack of documented 
evidence of successful projects. 

One more point to note is that IPSEs are often purchased by software managers for use by end 
user developers. If this process is badly managed, there will inevitably be end user resentment 
and frustration at the imposition of the new technology. This can only be overcome by ensuring 
that the IPSE is introduced as supporting the existing development processes, and with the 
cooperation and understanding of the eventual end users. 

8 CMU/SEI-91-TR-29 



Chapter 3 

Alternative Solutions 

While the introduction of IPSE technology has been very limited in scope, the purchase and 
use of individual CASE tools has been widespread. Many commercial organizations have exper- 
imented with automated software development tools. While initially these tools were aimed at 
the implementation phases of software development (coding, debugging, version control), more 
recently there has been rapid development of tools addressing other aspects of software devel- 
opment. For example, there are now many tools which address some aspects of system design, 
data modeling, and management support. Such tools are typically classed together under the 
often-used term “CASE tool”. We can refer to commercial organizations that use CASE tools 
in this way as “first generation” CASE tool users. 

As the use of such tools has grown, there has been increasing interest in ways of combining 
CASE tools to support more of the software life-cycle. This “second generation” of CASE tool 
users has experienced the advantages of individual tools, but now requires tools which work in 
combination. What many commercial organizations are doing is buying collections of CASE 
tools and “glueing” them together in the best way they can, rather than move to an IPSE 
solution. The “glue” is provided through a common set of data definitions used between the 
tools, use of a common data transfer protocol, or through the writing of individual conversion 
routines to link the tools used by the organization. The term “integrated CASE (iCASE)” is 
often used in this context. There are, of course, many obvious disadvantages to this inflexible, 
piecemeal approach to tool integration. However, the popularity of this approach has a very 
pragmatic rationale: 

l It provides what is often seen as a relatively low cost approach to integrated tool support 
(although in practice this cost can be high). One of the main drawbacks of IPSE technology 
is its high cost. Following a CASE tool approach provides not only a low cost entry point 
into the technology, but also the possibility of developing the CASE tool environment 
through incremental investment in new tools. 

l The investment that is made is seen as being easier to justify. Most of these commercial 
organizations have already made some investment in CASE tool technology. This route 
to integrated support appears to be more incremental, and is acceptable because, in gen- 

CMU/SEI-91-TR-29 9 



eral, the approach employs simple, well understood technology with much less demand on 
hardware and administrative costs. Also, the range of CASE tools and CASE tool vendors 
means that there is more competition for business, and less reliance on a single supplier. 

l With IPSE solutions the technology is complex, and in many cases the users of the system 
have a very limited understanding of how it works. This can lead to resentment, frustration, 
and a poor attitude to its use. In contrast, CASE tools are often (in principle) deceptively 
simple. The technology is not seen as “getting in the way” as they are easier to understand, 
manage, and control. 1 The overall feeling is that the purchasing organization is “more in 
control” of the processes of purchasing, developing, and using the environment. 

l For most software systems the end-user organization is also responsible for systems ad- 
ministration, and, in particular, the task of systems integration. This is seen in two ways. 
First, from a technical view, the tool must be integrated with other tools that are in use. 
At its most basic this could be ensuring the tools run on the same operating system, or use 
the same window manager. For CASE tools the integration technology, while providing 
only low levels of tool integration, involves skills that are more readily available to the end- 
user organization (e.g. UNIX expertise). For IPSEs, the complex infrastructure services 
often make tool integration a much more specialist task. Second, from a process view, 
the tool must be integrated into the organization’s software development procedures. The 
piecemeal approach provided by individual CASE tools can offer a great deal of flexibility 
in this regard. In IPSEs the process definition mechanisms are often either fixed to a single 
pre-determined approach, or are sufficiently complex to require specialist support to make 
use of them. 

l In some ways many of the CASE tools can be seen as rather unambitious in their aims. 
However, they are seen as tackling the obvious and most pressing needs of many commercial 
organizations - version control, documentation support, and structured design method 
support. It may well be a situation in which the organizations must learn to walk before 
they attempt to run! The work by Watts Humphrey and others[l4] defining a series of levels 
of understanding of the software development process within commercial organizations 
certainly supports this point. The vast majority of the organizations examined were seen 
to be at the lowest level of understanding, or “maturity”. 
This leads to two schools of thought with respect to IPSE technology - either the in- 
troduction of complex technology to support a poorly understood software development 
process will rarely prove to be of benefit, leading instead to support for an automated, 
ill-defined software development process, or the more process-mature organizations do not 
necessarily require any more sophisticated development tools than the less mature ones, as 
they are able to make better use of those tools in a development process that is monitored, 
controlled, measured, and repeatable. Both of these cases emphasize the secondary role of 
IPSE technology. 

In this situation, perhaps simple solutions taken in small, well defined steps are the most 
effective. It is certainly difficult to believe that revolutionary steps such as the purchase 
of an IPSE will, in themselves, be effective. 

‘As users of some of the large CASE tools will know, the perception of eaSe of management and use of CASE 
tools is not always borne out in practice! 

10 CMU/SEI-91-TR-29 



c 

In summary, we note that on most occasions the purchase of a CASE tool is not seen as a 
strategic decision, but more as a pragmatic one. For example, it is often found to be easier to 
obtain money and management support for purchasing a new CASE tool, or integrating a set 
of CASE tools, than for investing in IPSE technology. This is due to the incremental nature of 
the investment, the more visible improvements in productivity they often bring, and the more 
manageable complexity of the new software. 

Iv 
t2 

CMU/SEI-91-TR-29 11 



12 CMU/SEI-91-TR-29 



Chapter 4 

Where is All the Money Going? 

It can certainly not be claimed that the lack of progress in introducing IPSE technology to 
industry is due to a lack of investment in the technology. In fact, the amounts of money being 
made available to work in this area are quite astounding. Examples of past and current expen- 
diture on IPSE technology development may be illustrated with examples from the Government 
sponsored research taking place in Europe and the USA? 

l The UK Government funded Alvey program part-funded three parallel IPSE projects - 
Aspect, ECLIPSE, and IPSE2.5. The total investment was in excess of 20 million pounds. 
The focus of this work was primarily on the data integration technology required for an 
IPSE, investigating the use of file based, database, and knowledge based system technology 
as the basis of an IPSE. 

l The European Commission has funded, or part-funded, a number of IPSE related projects 
under its ESPRIT programs, many of which are on-going. Examples include the 400 million 
dollar Eureka Software Factory (ESF) project, the estimated 600 man-years of effort on 
Atmosphere, and 200 man-years on ARISE. In all three of these projects the work taking 
place involves large consortia of different industrial/academic institutions, in a number of 
countries. As a result, the work itself tends to be very diverse in nature. However, one of 
the main foci of the much of the work is a concentration on process support mechanisms. 

l In the U.S. there have been a number of government related initiatives. Notable amongst 
them are the Ada Programming Support Environment (APSE) work (individual projects 
sponsored by the Army and Navy) at a total cost of approximately 100 million dollars and 
the software development environment work carried out as part of the DARPA funded 
STARS program estimated at 75 million dollars. While the APSE work was focused 
directly on support for Ada software development, the STARS project has very extensive 
goals, aiming to develop a large, generic frameworks suitable for supporting a wide range 
of computer system developments. 

‘One point to note is the scale of some of these projects, involving a large group of people, from many companies 
and universities, often from different countries. This leads to communication difficulties, coordination problems, 
and inevitable political manoeuvrings within the projects. 

CMU/SEI-91-TR-29 13 



A target of much of the European research effort over the past ten years has been the work 
on the Portable Common Tools Environment (PCTE) and its related projects, and in the U.S. 
on its counterpart, the Common APSE Interface Set (CAIS), and its derivatives. These large 
initiatives have attracted (and continue to attract) much attention and a great deal of the 
research effort and funds. 

However, given the earlier discussion on the reasons for a lack of widespread use of IPSE tech- 
nology, we are inevitably drawn to the conclusion that the emphasis of much of the current IPSE 
research is misguided. In particular, we would suggest that IPSE research in the following areas 
would be useful: 

l Smaller, user-oriented, application-led projects. 

This would enable user requirements to be more clearly identified, and specific solutions 
examined in detail. 

l Gaining extensive experience with existing tools, toolsets, and IPSEs. 

This would not only increase awareness of existing good practices, but would also allow us 
to collect data on productivity and quality using existing approaches, and enable further 
work to take place in developing suitable metrics for this field. 

l Evolutionary approaches rather than revolutionary. 

It is important to realize that the acceptance and use of IPSE technology may be as much 
based on pragmatic issues as on technical ones, with the result that the more intellectually 
appealing, and technically demanding, solutions are not necessarily those that will be most 
beneficial to users in practice. 

l Widening the appeal of work on IPSEs. 

At present there is an ideological split between those working in the the area of real-time, 
embedded systems such as avionics, and those in the data processing and information 
systems world. In the past IPSEs have been targeted more towards the former, rather 
than the latter market. It is clear that there is much to learn from the commercial CASE 
tool world, with the hope that both markets will be served by the resultant architectures, 
methods, and tools. Building on the experiences of both these fields could provide the 
basis we require. 

14 CMU/SEI-91-TR-29 



Chapter 5 

Key Issues for the Future 

Having highlighted some of the reasons for the lack of widespread IPSE use, we now look at 
what we believe will be major issues for the future in attempting to resolve the current situation. 
While there are clearly many issues on which we could focus, in this discussion we choose to 
address some of the issues that we believe are not currently seen as being crucial to future 
progress, but that we forecast will be of vital importance. 

l A return to the IPSE users’ requirements. 

There remains a certain lack of focus in current IPSE work which we believe can be traced 
directly to a lack of understanding of the different IPSE users and their requirements. We 
are now at an appropriate point in IPSE understanding at which to return to the potential 
IPSE users to discover why they are not adopting the technology currently available. There 
certainly appears to be concern from those skeptical of the value of IPSE research that 
the work has concentrated too much on the technology per se, without sufficient regard 
for the areas in which the most leverage can be obtained from using such technology. 

In particular, it appears that the gap between IPSE researchers and potential IPSE users 
is growing. Some people believe, for example, that the large, Government-funded, collab- 
orative research projects are in danger of becoming too far out of step with user needs[l3]. 
Similarly, this issue was also a major focus of a recent workshop looking at the possi- 
ble convergence of the PCTE and CAIS proposals[l5], with some participants concluding 
that there was a real need for much more work to establish concrete, low level end user 
requirements before the work could progress. 

A second issue is that the level of requirements definition in the past has often as- 
sumed particular technical solutions. For example, both the Requirements and Crite- 
ria (RAC) document[l6] for the Common APSE Interface Set (CAIS), and its European 
counterpart[ll] (EURAC) for the Portable Common Tools Environment (PCTE) were pro- 
duced after their respective system definitions had been produced, and were an attempt 
to influence that definition’s future direction. At a more fundamental level, it remains be 
established that the technical solutions provided really do meet the end users’ needs. 

CMU/SEI-91-TR-29 15 



Running counter to this, of course, is the argument that users often do not know or fully 
understand their requirements in this area. This highlights the need for an intelligent 
approach to requirements elicitation and analysis, and for the incremental development 
and introduction of IPSE technology into an organization. Hence, it is the role of the 
IPSE designers and researchers to ensure that their vision for the future is tempered by 
the IPSE user’s current reality. 

l An understanding of the process as a precursor to the introduction of solutions. 

This quite obvious point is very often overlooked. However, it must be emphasized that 
IPSE technology is not a replacement for well defined, visible software development proce- 
dures - it merely supports those procedures. As Humphrey’s work on software conformance 
levels[l4] has shown, the level of understanding of software processes within many com- 
mercial organizations is particularly low. While an IPSE can help support a process when 
it is in place, it is not a substitute for sensible development procedures. Many compa- 
nies are beginning to recognize this, and a number of companies are actively involved in 
defining and administering so-called “process improvement programs”. The result of this 
work may not only be companies who better understand the way in which they develop 
software, it may also lead to a better understanding of the software development process 
itself. This will feed directly into the process modeling aspects of IPSE technology. 

l Useful models for understanding IPSE technology. 

One of the main barriers to greater acceptance of IPSEs is the confusion and misunder- 
standing surrounding the whole area. Part of the reason for this is that we have not had 
sufficiently detailed, yet generally applicable models of IPSEs with which to explain, rea- 
son, understand, and teach. The Stoneman model, useful as it was at the time, provides 
too coarse a model for any detailed work. In addition, the models that have been defined 
(such as the Stoneman model) have IPSE developers as their primary audience. Other key 
users (such as tool integrators and IPSE end users) have to a large extent been ignored. 

Very recently this problem has started to be addressed in a number of ways. In particular, 
we can highlight two approaches. First, a reference model for analyzing and examining 
existing and proposed IPSE solutions has been proposed and accepted by the European 
Computer Manufacturing Association (ECMA)as an approved technical report[lO]. This 
provides us with a mechanistic view of the current systems. Second, recent work [22, 29, 
5, 211 has looked at the key issue of integration within an IPSE and proposed measures 
for different aspects of the integration. This provides a semantic view of the integration 
requirements of an IPSE system. These approaches are complementary, and both are useful 
and helpful in providing us with a better understanding of the complex issues involved in 
this field. 

However, there is one further view of integration which has yet to receive significant at- 
tention - a process view. This third approach addresses the integration of tools within 
an organization’s existing software development process. No generally applicable models 
are currently available in this area. 

16 CMU/SEI-91-TR-29 



l An evolution towards federated architectures. 

In characterizing work on computer-based support for software development we see that 
while IPSE technology has concentrated on the framework services, CASE environments 
have emphasized the individual tools. There are obvious grounds for believing that future 
systems must employ the best of both approaches. One recent proposal[21] examines 
the ideas of a “federated” architecture based on process support through the concept of 
environment services. In this way, the distinction between a “tool” and a “framework 
service” is dissolved. Instead, users request services that are provided by the environment. 
Details of tools and framework are hidden below. While more work is clearly required to 
fully validate such an approach, it does seem an attractive way to ensure that the strengths 
of both IPSE and CASE technology are preserved in future systems. 

In summary, we see that a need to better understand IPSE user requirements remains, ideally 
before embarking on further large, expensive system developments. Arguably, we are still not in 
a position to make such a complete and detailed analysis of IPSE user requirements. However, 
as happens in the development of any large, complex system, requirements analysis and design 
proceed hand-in-hand, with the results of partial designs and implementations feeding directly 
into further requirements elicitation and analysis activities. This leads us to believe that require- 
ments analysis for IPSEs, together with the design and development of IPSE mechanisms, must 
take place in parallel, using the requirements to evaluate the designs, and the designs as the 
basis for elicitation of further IPSE requirements. Approaches aimed at combining the strengths 
of both IPSE and CASE technology seem an attractive way forward. 

CMU/SEI-91-TR-29 17 



18 CMU/SEI-91-TR-29 



Chapter 6 

Summary 

In this paper we have tried to summarize some of the main issues currently of concern to IPSE 
workers by looking towards the future of IPSEs and IPSE technology and identifying some of 
the likely key areas. 

IPSE research has been successful in a number of important ways. In particular, there have 
been great advances in understanding aspects of the technology required to support software 
development. This has had repercussions in other areas of software engineering. Interest in 
object-oriented databases, for example, has been spurred on by the evolving knowledge of the 
necessary data support mechanisms for an IPSE[4]. 

However, while it is clear that there have been great advances since the seminal work of the 
early 1980’s described in the Stoneman report, there is still a long way to go. Our main hope 
is that the relative lack of success does not obscure the many great advances in understanding 
that have been made in the past decade. In particular, we should see the main success of the 
work as helping us to re-focus our attention on the issues which are important for the future 
- understanding the nature and requirements of IPSE users, the importance of a knowledge 
of the development process to software production, and an emphasis on getting the best out 
of available technology to improve future development. The proposals made in this paper have 
been constructed with the aim of ensuring that future work builds on these successes. 

The 1990’s should prove an interesting and exciting time for IPSE workers, with many major 
issues still to be tackled. Perhaps after all this time, following a great deal of exploration, we 
are only just beginning to understand some of the issues that must be addressed in this work, 
and the important questions that remain to be answered. In fact, we can now perhaps claim no 
more than to “know the place for the first time”. 

CMU/SEI-91-TR-29 19 



Acknowledgements 

Many of the ideas reported in this paper have benefited from discussions with John McDermid 
at the University of York, and Anthony Earl at Hewlett-Packard Labs in Bristol. 

Earlier drafts of this paper were improved through the advice of colleagues at the SEI, notably 
Larry Druffel, Bob Ellison, Peter Feiler, Dennis Smith, and Kurt Wallnau, and following com- 
ments from Tricia Oberndorf of NADC. Dick Martin at the SE1 helped with some of the figures 
quoted. 

My thanks also to Peter Hitchcock for the T.S. Eliot quotation! 

20 CMU/SEI-91-TR-29 



r’“m” 
~23 
GPi <.n DlY, l-r-, 
z 
e2 

Bibliography 

[l] P.A. Bernstein. Database System Support for Software Engineering. Proceedings of the 9th 
International Conference on Software Engineering, pages 166-179, March 1987. 

[2] M.F. Bott, editor. ECLIPSE - An Integrated Project Support Environment. Peter Peregri- 
nus, 1989. 

[3] A.W. Brown. Database Support for Software Engineering. Chapman and HaI& 1990. 

[4] A.W. Brown. Object-Oriented Databases and their Application to Software Engineering. 
McGraw-HZ, 1991. 

[5] A.W. Brown and J.A. McDermid. On Integration and Reuse in a Software Development 
Environment. In Fred Long and Mike Tedd, editors, Software Engineering Environments 
‘91. EIIis Horwood, 1991. 

[6] J.N. Buxton. Requirements for APSE - Stoneman. U.S. Department of Defence, February 
1980. 

[7] J.N. Buxton and L.E. Druffel. Requirements for an Ada Programming Support Envi- 
ronment: Rationale for Stoneman. In Proceedings of COMPSAC 80, pages 66-72. IEEE 
Computer Society Press, October 1980. 

[8] M. Dowson. ISTAR - An Integrated Project Support Environment. Proceedings of 2nd 
SIGSOFT/SIGPLAN Symposium on Practical Software Development Environments, pages 
27-33, December 1986. 

[9] A.N. Earl and R.P. Whittington. Capturing the Semantics of an IPSE Database - Problems, 
Solutions and an Example. Data Processing, 27(9), November 1985. 

[lo] ECMA. A Reference Model for Computer-Assisted Software Engineering Environments. 
ECMA Report Number TR/55, January 1991. 

[ll] GIE Emeraude, Selenia, and Software Sciences. Requirements and Design Criteria for Tool 
Interfaces (EURAC), 1987. 

[12] F. Gallo, R. Minot, and I. Thomas. The Object Management System of PCTE as a Soft- 
ware Engineering Database Management System. Proceedings of 2nd SIGSOFT/SIGPLAN 
Symposium on Practical Software Development Environments, pages 12-15, December 1986. 

CMU/SEI-91-TR-29 21 



[13] A. GiIIes. Conference Report. Information and Software Technology, 33(2), March 1991. 

[14] W.S. Humphrey. Managing the Software Process. Addison-Wesley, 1989. 

[15] Yard Ltd. Proceedings of the PCIS Workshop. June 1991. 

[16] US Department of Defense. Requirements and Design Criteria for the Common APSE 
Interface Set, 1986. 

[17] C. Price. SAFRA - A Debrief Report. NCC Publications, 1987. 

[18] R.A. Snowdon. A Brief Overview of the IPSE2.5 Project. Ada User, 9(4):156-161,1988. 

[19] R.N. Taylor and Others. Foundations for the arcadia environment architecture. ACM 
SIGPLAN Notices, 24(2):1-13, February 1989. 

[20] I. Thomas and B. Nejmah. Tool Integration in a Software Engineering Environments. 
Technical Report SESD-91-11 Revision 1.1, Hewlett-Packard, June 1991. 

[al] K.C. WaIInau and P.H. Feiler. Evolving Towards Federated, Services-Based CASE Envi- 
ronments. Submitted for publication, June 1991. 

[22] A. Wasserman. Tool Integration in Software Engineering Environments. In F. Long, editor, 
Software Engineering Environments, number 467 in Lecture Notes in Computer Science, 
pages 138-150. Springer-Verlag, 1990. 

22 CMU/SEI-91-TR-29 



uNLmmED, uNcLAssIFlED 
SEaJIUN CLASSlFICp;I1ON OF THIS PAGE 

REPORT DOCUMENTATION PAGE 
la. REPORT SECURITY CLASSIFICATION 1 b. R!LSTRKTNE MARKINGS 

Unclassified None 

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAlLABILITY OF REPORT 

N/A Approved for Public Release 
2b. DECI.ASSIFICATION/DOWNGRADING SCHEDULE Distribution Unlimited 

N/A 
4. PERFORMING ORGANIZATI ON REPORT NUMBER(S 5. MONITORING ORGANIZATI ON REPORT NUMBER(S) 

CMU/SEI-91 -TR-29 ESD-91 -TR-29 

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL la. NAME OF MONITORING ORGANQATION 

Software Engineering Institute (if applicable) 

SEI 
SEI Joint Program Office 

6~. ADDRESS (City, State and ZIP Code) 

Carnegie Mellon University 
Pittsburgh PA 15213 

7b. ADDRESS (City, State and ZIP Code) 

ESDIAVS 
Hanscom Air Force Base, MA 01731 

88. NAME OFFUNDlI’TG/SPONSORING 
ORGANIZATION 

SEI Joint Program Office 

8b. OFFICB SYMBOL 9. PROCUREMENT INSTRUMENT IDETTlTFlCATION NUMBER 
(if apphable) 

ESDIAVS 
F196289OCOOO3 

lc. ADDRESS (City, State and ZIP Code) 

Carnegie Mellon University 
Yttsburgh PA 15213 

11. TlTLE (Include Seauity Classifimion) 

10. SOURCE OFFUNDING NOS. 

PROGRAM PROJECI ELEMENT NO NO. 
63756E N/A 

TASK WORK UNIT 
NO. 

KA N/A 

A Critical Review of the Current State of IPSE Technology 
12. PERSONAL AUTHOR(S) 
Alan W. Brown 

13~ TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPOF’J (Yr., MO., Day) 

Final FROM Kl October 1991 
16. SUPPLEMENTARY NOTATION 

15. PAGE COUNT 

22 PP. 

17. COSATI CODES 18. SUBIECI TERMS (Ccntintte cm tevetxe of ncccssaty and identify by block nuthe.t) 

FlELD GROUP SUB. GR. IPSE 
.,lntegrated Project Support Environment 

Software Environments Environments 

19. ABSTRACT’ (Continue on rev&e. if necessary and identify by block number) 

In the past ten years, there has been a great deal of interest in the concept of an Integrated Project Support 
Environment (IPSE) as a complete, unifying framework of services supporting most (or all) phases of software 
development and maintenance. In this report, we evaluate the current state of research work in this area, 
suggest some reasons for the relative lack of success, and make proposals for ensuring measured progress 
in the future. 

20. DISTRIBUTION/AVAILABIIITY OF ABSTRACI 

UNCL4SSIFIED/UNLIMlTED SAME AS RPTDTIC USERS 
I 

21. ABSTRACT SECURITY CLASSIFICATION 

Unclassified, Unlimited Distribution 

(please him over) 

22a. NAME OF RESPONSIBLE INDIVIDUAL 

Charles J. Ryan, Major, USAF 
2% TELEPHONE NUMBER (Include Area Code.) 

(412) 268-7631 
22s. OFFICE SYMBOL 

ESD/AVS (SEI) 

DD FORM 1473.83 APR EDlTION of 1 JAN 73 IS OBSOLEIE UNLIMITED. UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS 



one, block 19 


